Adiabatic approximation in the second quantized formulation
نویسنده
چکیده
Recently there have been some controversies about the criterion of the adiabatic approximation. It is shown that an approximate diagonalization of the effective Hamiltonian in the second quantized formulation gives rise to a reliable and unambiguous criterion of the adiabatic approximation. This is illustrated for the model of Marzlin and Sanders and a model related to the geometric phase which can be exactly diagonalized in the present sense.
منابع مشابه
Topological properties of Berry’s phase
By using a second quantized formulation of level crossing, which does not assume adiabatic approximation, a convenient formula for geometric terms including offdiagonal terms is derived. The analysis of geometric phases is reduced to a simple diagonalization of the Hamiltonian in the present formulation. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing...
متن کاملGeometric phase and chiral anomaly ; their basic differences 1 Kazuo Fujikawa
All the geometric phases are shown to be topologically trivial by using the second quantized formulation. The exact hidden local symmetry in the Schrödinger equation, which was hitherto unrecognized, controls the holonomy associated with both of the adiabatic and non-adiabatic geometric phases. The second quantized formulation is located in between the first quantized formulation and the field ...
متن کاملGeometric Phase and Chiral Anomaly in Path Integral Formulation
All the geometric phases, adiabatic and non-adiabatic, are formulated in a unified manner in the second quantized path integral formulation. The exact hidden local symmetry inherent in the Schrödinger equation defines the holonomy. All the geometric phases are shown to be topologically trivial. The geometric phases are briefly compared to the chiral anomaly which is naturally formulated in the ...
متن کاملua nt - p h / 05 10 04 9 v 1 7 O ct 2 00 5 Berry ’ s phases and topological properties in the Born - Oppenheimer approximation 1
The level crossing problem is neatly formulated by the second quantized formulation, which exhibits a hidden local gauge symmetry. The analysis of geometric phases is reduced to a simple diagonalization of the Hamiltonian. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitr...
متن کاملAdiabatic Invariant Treatment of a Collapsing Sphere of Quantized Dust
The semiclassical collapse of a sphere of quantized dust is studied. A BornOppenheimer decomposition is performed for the wave function of the system and the semiclassical limit is considered for the gravitational part. The method of adiabatic invariants for time dependent Hamiltonians is then employed to find (approximate) solutions to the quantum dust equations of motions. This allows us to o...
متن کامل